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Abstract 

A numerical investigation of natural convection inside eccentric horizontal annulus filled 

with saturated porous medium is carried out. The solution scheme is based on two-dimensional 

model, which is governed by Darcy-Oberbeck-Boussinseq equation. The inner cylinder is heated 

isothermally while the outer one is cooled isothermally.  

Discretization of the governing equations is achieved using finite element scheme based 

on Galerkin method of weighted residuals. The effect of pertinent parameters such as the 

modified Rayleigh number (Ra) and the relative eccentricity for radius ratio of 2 are considered 

in this study. The modified Rayleigh number ranges from 10 to 400 while the relative 

eccentricity () ranges from 0.1 to 0.8. The effect of eccentricity direction is also studied by 

making runs for eccentricity in horizontal, vertical, 45
o
 and 315

o
 orientation.  

The numerical results obtained from the present model are compared with the available 

published results and a good agreement was found. The average Nusselt number and heat 

transfer as a function of Rayleigh number is presented. Also the flow and heat transfer 

characteristics are illustrated in terms of stream function and isotherms. 

   

1. Introduction 

Natural convection in horizontal porous annuli has a wide variety of technological 

applications such as insulation of aircraft cabin or horizontal pipes, cryogenics, storage of 

thermal energy, and underground cable systems. The case considered here, probably of the most 

practical importance in which the cylinder's surfaces are impermeable and maintained at constant 

uniform temperatures, with the inner temperature being higher than the outer one. Buoyancy 

driven flow is induced in the media due to temperature difference.  

The case of concentric cylinders has received the most attention in the literature. 

Caltagirone [1] visualized the isotherms in an annulus of radius ratio of 2, and determined 

experimentally the Nusselt number based on the temperature measurements of the thermal field. 

At high Rayleigh numbers, the flow was reported to have a change from two-dimensional to 

three-dimensional oscillatory motion, partially confirmed by finite element simulation, which let 

the author to conclude that multi-cellular two-dimensional patterns do not exist. In the same 

study, the equations governing two-dimensional convection motion were solved using finite 

difference, but due to the insufficient number of grid points Caltagirone was unable to obtain 

other flow regimes in addition to the two-cellular one. Echigo et al. [2] also obtained two-

dimensional steady state numerical results taking into account the radiation effect. 

Burns and Tien [3] examined the variations of the overall heat transfer coefficients with 

the external heat transfer coefficient and radius ratio by steady-state two-dimensional analyses 

with the finite difference method and purturbation method. It was indicated that a maximum 

value of overall heat transfer coefficient existed depending upon the radius ratio. Using finite 

difference method. 

Fukuda et al. [4] obtained three-dimensional results using finite difference method for an 

inclined annulus. However, the results could not be extended to the horizontal case owing to the 
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presence of the gravitational force component in the axial direction of the annulus, which is not 

present in the horizontal case. 

Rao el al. [5-6] investigated steady and transient analyses of natural convection in 

horizontal porous annulus with Galerkin method. They obtained three families of convergent 

solutions appearing one after the other with increasing modified Rayleigh number corresponding 

to different initial conditions. They also determined numerically the bifurcation point, which 

coincide very well with that from the experimental observations of Caltagirone [1].  

Two-dimensional numerical work by Mota et al. [7-9] solved two-dimensional 

Boussinesq equations using finite difference scheme with an ADI method and successive under 

relaxation to a very fine grid. They showed that for very small radius ratio and on increasing the 

Rayleigh number, the steady state regime changes from two to four to six to eight cells without 

exhibiting a hystresis loop. For radius ratio above 1.75 approximately, closed hystersis loops 

between ranges containing 2 or 4 cells are obtained. 

  Charrier-Mojtabi et al. [10], observed the two-dimensional two-cellular flow pattern for 

radius ratio of 2 when Rayleigh number was increased up to 250, after which three-dimensional 

effect become visible in the upper part of the annulus region. When Rayleigh number decreases 

the flow pattern become two-dimensional again and consisted of four convection cell flow 

structures and seems to confirm the hystresis behavior obtained by Mota and Saatdjian [7-9].  

Al-fahaid and Sakr [11] studied numerically steady state natural convection in fully 

saturated porous concentric annuls using Galerkin method. They investigated the effect of 

modified Rayleigh number and the radius ratio on the Nusselt number at the heated cylinder. 

The eccentric annulus was studied numerically by Bau et al., using finite difference and 

regular perturbation expansion technique [12]. Using a two-term regular perturbation expansion 

Bau [13] investigated three different geometrical configurations: an eccentric annulus, a buried 

pipe, and two cylinders one outside the other. 

Himasekhar and Bau [14] used boundary layer technique to obtain a correlation for 

Nusselt number as a function of Rayliegh number and the geometrical parameters valid for a 

large range of Rayleigh numbers.  

Mota and Saatdjian [15] used accurate finite difference code for two-dimensional 

convection between concentric cylinders and modified it to investigate the flow in eccentric 

annuli. They used only vertical eccentricity in a range from 0.01 to 0.9 for a radius ratio of 2. 

They found that the net gain due to eccentricity of insulation could be of order 10% compared 

with the concentric case. They also, showed that reducing the radius ratio or increasing the 

eccentricity has the same impact on the geometry in the top part of the layer where the 

convective effects are more pronounced.   

El-Ghanam [16] studied the effect of vertical and horizontal eccentricity in porous 

horizontal cylindrical annulus for different radius ratios. His results demonstrated that the 

eccentric insulation is more effective under certain conditions and therefore more economical 

than the currently used concentric insulation. 

Al-fahaid and Sakr [17] studied numerically steady state natural convection in fully 

saturated porous eccentric horizontal annuls having radius ratio of 2 using Galerkin method. The 

eccentricity is made on the horizontal axis. The purpose of the present work is to extend the 

works [16-17] to include the eccentricity in horizontal, vertical, 45
o
 and 315

o
 direction and wider 

range of Rayleigh number. 

 

2. Mathematical Formulation  

The model considered here is a porous layer bounded between two horizontal concentric 

cylinders of radii Ri and Ro as shown in Fig. (1a). The surfaces of the two cylinders are assumed 

to be maintained at a constant temperatures Ti and To respectively with Ti To.  

 



M  - 50 - 

 

 




X

Y

Ro

To

Ti

e

Ri

 
(a) 

 

 

 
 

(b) 

Fig. (1) Physical model geometry and mesh system 

 

2.1 Governing Equations 

The governing equations are based on transient natural convection with Boussinesq, 

Darcy flow, and negligible inertia approximation as follows: 
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Taking the curl of Eq. (2) and using the approximation of Eq. (4), the following equations are 

obtained: 
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2.2 Boundary Conditions 

The boundary conditions are handled as follows:- 

a- at the inner cylinder surface 

 1.0      , 0 =                         (10a)  

b- at the outer cylinder surface 

      0      , 0 =                              (10b) 

 

2.3 Heat Transfer Calculations 

The local Nusselt number at the inner and outer cylinders surfaces can be calculated from 

the following equations respectively: 
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where n: represent the direction normal to the cylinder surface. 

 The steady state average Nusselt number at the inner or outer cylinders surfaces are as 

given by: 
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3. Numerical Solution 

The solutions of Eqs. (8) and (9) with the boundary conditions specified by Eq. (10) are 

obtained numerically by using the Galerkin based finite element method [17, 19]. The finite 

element technique is used to reduce the system of governing equations into a discretized set of  
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algebraic  equations. The procedure begins with the division of the continuum region of interest 

into a number of simply shaped regions called elements. The grid system used in the present 

calculation is illustrated in Fig. (1b). The element type which used here is linear triangular 

element. The approximate expressions of temperature and stream function in an element are 

given by polynomials in terms of the nodal values and interpolation functions. The interpolation 

functions are derived from the assumption of linear variation of temperature and stream function 

through the element and are given by the following equation:  
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where, 

Nm is the usual interpolation function and is defined by:    
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The other components are given by cyclic permutation of the subscripts in the order 1,2 

and 3. If the approximations given by Eq. (13) are substituted in the governing Eqs.(8-9), and the 

global errors are minimized using the above interpolation functions Ni as weighting functions. 

After performing the weighted integration over the domain G and the application of Green’s 

theorem, The present model is converted into: 
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[K2] {} = {F2}                                          (16b)  
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Equations (8) and (9) result in two systems of linear equations. Equation (16a, b), that are  solved 

iteratively by Gauss elemination method through a FORTRAN computer code. The iterative 

procedure is terminated when the following relative convergence criterion is satisfied: 
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where,  i denotes the iteration number performed. 

 

4. Model Validation 

First the present numerical method is validated by solving the traditional convection 

problem for two concentric horizontal cylinders. The obtained results are compared with the 

available published data. Table 1 shows the average Nusselt Number for previous researchers. In 

comparison with the present results good agreement is found.  

 

Table 1: Comparison of the average Nusselt number for natural convection flow in porous 

medium between two concentric cylinders with radius ratio of 2. 

 

 Caltagirone 

[1] 

Rao et al. 

[3] 

Bau 

[12] 

Facas 

[20] 

Facas & 

Farouk 

[21] 

Present 

result 

Grid size 49x49 10x10 30x44 50x50 25x25  10x18 

Ra=50 1.328 1.341 1.335 1.342 1.362 1.317 

Ra=100 1.829 1.861 1.844 1.835 1.902 1.865 

 

 

5. Results and Discussions  

The average Nusselt number at the inner hot cylinder as a function of the relative 

eccentricity in the horizontal direction is depicted in Fig. (2), at different Rayleigh numbers for a 

range of relative eccentricity from 0.1 to 0.8. It is shown that, as Rayleigh number increases the 

average Nusselt number increases and the curves have a minimum values located at zero 

eccentricities. This indicates that the concentric insulation is preferable than the eccentric one. 

For higher values of Rayleigh numbers the total heat flow can be reduced by eccentric insulation.  

The values of relative eccentricity that locates the minimum heat flow rate increases with the 

increase of Rayleigh number.  

The average Nusselt number at the inner hot cylinder as a function of the relative 

eccentricity in the vertical direction is depicted in Fig. (3), for different Rayleigh number. For 

higher values of Rayleigh numbers the average Nusselt number can be reduced or increased 

according to the value of the relative eccentricity.   

The average Nusselt number at the inner hot cylinder as a function of the relative 

eccentricity in the 45
o
 to the horizontal direction is depicted in Fig. (4), at different Rayleigh 

numbers. It is shown from the figure that as either Rayleigh number or at the relative eccentricity 

increase the average Nusselt number increases.  

The average Nusselt number at the inner hot cylinder as a function of the relative 

eccentricity in the 315
o
 to the horizontal direction is depicted in Fig. (5), for different Rayleigh 

number. The increase of relative eccentricity and Rayleigh number lead to an increase in the 

average Nusselt number.    

Figure (6) shows the stream functions for a relative eccentricity of 0.2 in the horizontal 

direction at different Rayleigh numbers of 10, 160, and 300 respectively. It is shown from the 

figure that the flow is composed of two unsymmetrical cells and the centers of cells rise upward 

as Rayleigh number increases.  Also, it is depicted from the figure that the intensity of the 



M  - 54 - 

 

contour lines increases near the walls of the inner and outer cylinders. Also, the values of stream 

function in both cells are different and opposite in signs depends on the flow direction. Figure (7) 

illustrates the corresponding isotherms. It is shown from the figure that, the isotherms are nearly 

circular at Ra=10. So, the conduction is the dominant mode of heat transfer and as the Rayleigh 

number increases the convection becomes dominant and it is noted that the intensity of isotherms 

become larger at the bottom of the inner cylinder and at the top of the outer cylinder, indicating 

more heat transfer rate at these location.     

 Figure (8) shows the contour lines of stream function for relative eccentricity in the 

horizontal direction of having a value of 0.5 and different Rayleigh numbers having values of 10, 

160 and 300 respectively. The flow patterns are composed of two unsymmetrical flow cells. In 

all cases the centers of cells moves upward and becomes bigger as Rayleigh number increases. 

The corresponding isotherms are illustrated in Fig. (9), from the figure, it is clear that the 

conduction is the dominant mode of heat transfer of heat transfer at Ra=10. As Rayleigh  number 

increases the convection plays its role in the heat transfer process. More intensive isotherms at 

the bottom of inner cylinder and at the top of the outer cylinder. 

 The same behavior of the flow and heat transfer characteristics for relative eccentricity in 

the horizontal direction having a value of 0.7 and Rayleigh number having values of 10, 160 , 

and 300 are illustrated in Figs. (10-11) respectively. 

For all cases, it is noticed that separation of the thermal boundary layer takes place as 

Rayleigh number increases and larger stratification, which is denoted by the straight line portions 

of the isotherms in the wider portion of the annulus takes place.   

Figure (12) illustrates the contour lines of stream function for relative eccentricity in the 

vertical direction is having a value of 0.2 and different Rayleigh numbers having values of 10, 

160, and 300 respectively. It is shown from the figure that the flow is composed of two 

symmetrical cells about the vertical axis and the centers of cells rise upward as Rayleigh number 

increases. Figure (13) shows the corresponding isotherms. It is shown from the figure that, the 

isotherms are nearly circular at Ra=10. So, the conduction is the dominant mode of heat transfer 

and as the Rayleigh number increases the convection becomes dominant and it is noted that the 

intensity of isotherms become larger at the bottom of the inner cylinder and at the top of the 

outer cylinder, indicating more heat transfer rate at these location.     

 The contour lines of stream function for relative eccentricity in the vertical direction 

having a value of 0.5 and different Rayleigh numbers having values of 10, 160 and 300 

respectively is shown in Fig. (14). It is shown from the figure that, the flow pattern is composed 

of two flow cells at Ra=10 and four flow cells for Ra=160 and 300 respectively. The 

corresponding isotherms are illustrated in Fig. (15), from the figure, it is clear that the 

conduction is the dominant mode of heat transfer of heat transfer at Ra=10. As Rayleigh number 

increases the convection plays its role in the heat transfer process. More intensive isotherms at 

the bottom of inner cylinder and at the top of the outer cylinder. The same behavior of the flow 

and heat transfer characteristics for relative eccentricity in the vertical direction having a value of 

0.7 and Rayleigh number having values of 10, 160 , and 300 are illustrated in Figs. (16-17) 

respectively. 

Figure (18) shows the contour lines of stream function for relative eccentricity in the 45
o
 

to the horizontal direction having a value of 0.2 and different Rayleigh numbers having values of 

10, 120, and 300 respectively. It is shown from the figure that, the flow is composed of two 

unsymmetrical cells and the centers of cells rise upward and become bigger as Rayleigh number 

increases and having different values. The corresponding isotherms are illustrated in Fig. (19).  

 The contour lines of stream function for relative eccentricity in the 45
o
 to the horizontal 

direction having a value of 0.4 and different Rayleigh numbers having values of 10, 80, and 120 

respectively are shown in Fig. (20). It is shown from the figure that, the flow is composed of two 
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unsymmetrical cells and the centers of cells rise upward and become bigger as Rayleigh number 

increases having different values. The corresponding isotherms are illustrated in Fig. (21). 

Figure (22) shows the contour lines of stream function for relative eccentricity in the 45
o
 

to the horizontal direction having a value of 0.6 and different Rayleigh numbers are having 

values of 10, 80, and 120 respectively. It is shown from the figure that the flow is composed of 

two unsymmetrical cells and the centers of cells rise upward and become bigger as Rayleigh 

number increases having different values. The corresponding isotherms are illustrated in Fig. 

(23).  

Figure (24) shows the contour lines of stream function for relative eccentricity in the 315
o
 

to the horizontal direction having a value of 0.2 and different Rayleigh numbers having values of 

10, 200, and 300 respectively. It is shown from the figure that the flow is composed of two 

unsymmetrical cells and the centers of cells rise upward and become bigger as Rayleigh number 

increases having different values. The corresponding isotherms are illustrated in Fig. (25). The 

separation of the thermal boundary layer is depicted as Rayleigh number increases. 

Figure (26) shows the contour lines of stream function for relative eccentricity in the 315
o
 

to the horizontal direction having a value of 0.4 and different Rayleigh numbers having values of 

10, 200, and 300 respectively. It is shown from the figure that the flow is composed of two 

unsymmetrical cells and the centers of cells rise upward and become bigger as Rayleigh number 

increases having different values. The corresponding isotherms are illustrated in Fig. (27).  

Figure (28) shows the contour lines of stream function for relative eccentricity in the 315
o
 

to the horizontal direction having a value of 0.2 and different Rayleigh numbers having values of 

10, 200, and 300 respectively. It is shown from the figure that the flow is composed of two 

unsymmetrical cells and the centers of cells rise upward and become bigger as Rayleigh number 

increases having different values. The corresponding isotherms are illustrated in Fig. (29).  

 

6. Conclusions 

 The numerical investigation of natural convection inside eccentric annulus filled with 

saturated porous medium for radius ratio of 2 is carried out.  The followings are the main points 

that can be concluded from the present study:- 

1.An accurate finite element code was developed to solve the two-dimensional Darcy-

Boussinesq equations for an eccentric horizontal annulus filled with saturated porous medium 

and the eccentricity was made in different directions. 

2.For Ra ≤ 10, the concentric insulation is the most efficient as the average Nusselt number has a 

minimum at zero relative eccentricity. 

3.For eccentricity in any direction the average Nusselt number is increased by the increase of 

Rayleigh number. 

4. For higher values of Rayleigh number, the average Nusselt number a has minimum or 

maximum at different relative eccentricity according to the eccentricity direction and the value 

of Rayleigh number.    

5.Except for the direction 45
o
 to the horizontal, the present code is able to predict the present 

phenomenon for Rayleigh number up to 400 and any acceptable value of relative eccentricity. 

6.Generally, the effect of Rayleigh number on the average Nusselt number is more significant 

than the effect of relative eccentricity except for abrupt change conditions.   

 

 

 

 

 

 

 



M  - 56 - 

 

Nomenclature 

 

A       element area Greek 

c        specific heat       thermal diffusivity of the porous medium 

Da     Darcy number, Da=K/Ri
2
       thermal expansion coefficient 

e        eccentricity          circumferential angle 

E       total number of elements       domain boundary 

{F}   force vector         dimensionless temperature 

g        gravity vector        viscosity 

G       bounded domain        density 

h        heat transfer coefficient             stream function 

K       permeability      dimensionless stream function 

[K]    stiffness matrix        relative eccentricity = e/Ri 

ke      effective thermal conductivity of the 

porous media  
Subscripts 

Nu     Nusselt number e        effective 

n        normal direction f         fluid 

N      interpolation function i.        inner 

R       radius ratio, Ro/Ri o        outer   

Ri      inner cylinder radius r.       reference 

Ro      outer cylinder radius x,y     Cartesian components 

Ra    Rayleigh number, 

        fe

3

ioiffr f
k/R)T(T c  gRa 

 

Superscripts 

Ra*    modified Rayleigh number,  

         feioiffr f

* k/R)TK(T c  gRa 
 

e.       element level 

T       temperature i.        iteration number 

u       velocity component in x-direction T       transpose 

v       velocity component in y-direction        average 

x, y   Cartesian coordinates   

X, Y  dimensionless Cartesian coordinates   
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Fig. (2) Variation of the average Nusselt number with relative eccentricity  

for different Rayleigh numbers (eccentricity in horizontal direction) 
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Fig. (3) Variation of the average Nusselt number with relative eccentricity  

for different Rayleigh numbers (eccentricity in vertical direction) 
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Fig. (4) Variation of the average Nusselt number with relative eccentricity  

for different Rayleigh numbers (eccentricity in 45
o
 direction) 
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Fig. (5) Variation of the average Nusselt number with relative eccentricity  

for different Rayleigh numbers (eccentricity in 315
o
 direction) 
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Fig. (6) Stream function contours for relative eccentricity of 0.2 and Rayleigh number 

of 10, 160 and 300 respectively, (eccentricity in horizontal direction) 
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Fig. (7) Isotherms contours for relative eccentricity of 0.2 and Rayleigh number 

of 10, 160 and 300 respectively, (eccentricity in horizontal direction) 
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Fig. (8) Stream function contours for relative eccentricity of 0.5 and Rayleigh number 

of 10, 160 and 300 respectively, (eccentricity in horizontal direction) 
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Fig. (9) Isotherms contours for relative eccentricity of 0.5 and Rayleigh number 

of 10, 100 and 300 respectively, (eccentricity in horizontal direction) 
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Fig. (10) Stream function contours for relative eccentricity of 0.7 and Rayleigh number 

of 10, 160 and 300 respectively, (eccentricity in horizontal direction) 
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Fig. (11) Isotherms contours for relative eccentricity of 0.7 and Rayleigh number 

of 10, 160 and 300 respectively, (eccentricity in horizontal direction) 
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Fig. (12) Stream function contours for relative eccentricity of 0.2 and Rayleigh number 

of 10, 160 and 300 respectively, (eccentricity in vertical direction) 

 

 

0.0625

0.1875

0.3125
0.4375

 

0.1875

0.3125
0
.4

3
7
5

0
.5

6
2
5

0
.6

8
7
5

0
.8

1
2
5

0.
93

75

0.0625

 

0.0625

0.1875

0.3125

0.4375

0
.5

6
2
5

0
.6

8
7
5

0
.8

1
2
5

0.
93

75

 
   

Fig. (13) Isotherms contours for relative eccentricity of 0.2 and Rayleigh number 

of 10, 160 and 300 respectively, (eccentricity in vertical direction) 
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Fig. (14) Stream function contours for relative eccentricity of 0.5 and Rayleigh number 

of 10, 160 and 300 respectively, (eccentricity in vertical direction) 
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Fig. (15) Isotherms contours for relative eccentricity of 0.5 and Rayleigh number 

of 10, 160 and 300 respectively, (eccentricity in vertical direction) 
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Fig. (16) Stream function contours for relative eccentricity of 0.7 and Rayleigh number 

of 10, 160 and 300 respectively, (eccentricity in vertical direction) 
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Fig. (17) Isotherms contours for relative eccentricity of 0.7 and Rayleigh number 

of 10, 160 and 300 respectively, (eccentricity in vertical direction) 
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Fig. (18) Stream function contours for relative eccentricity of 0.2 in direction 45
o
 to the 

horizontal and Rayleigh number of 10, 120 and 300 respectively 
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Fig. (19) Isotherms contours for relative eccentricity of 0.2 in direction 45
o
 to the horizontal 

and Rayleigh number of 10, 120 and 300 respectively 
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Fig. (20) Stream function contours for relative eccentricity of 0.4 in direction 45
o
 to the 

horizontal and Rayleigh number of 10, 80 and 120 respectively 
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Fig. (21) Isotherms contours for relative eccentricity of 0.4 in direction 45
o
 to the horizontal 

and Rayleigh number of 10, 80 and 120 respectively 
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Fig. (22) Isotherms contours for relative eccentricity of 0.6 in direction 45
o
 to the horizontal 

and Rayleigh number of 10, 80 and 120 respectively 
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Fig. (23) Isotherms contours for relative eccentricity of 0.6 in direction 45
o
 to the horizontal 

and Rayleigh number of 10, 80 and 120 respectively 
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Fig. (24) Stream function contours for relative eccentricity of 0.2 in direction 315
o
 to the 

horizontal and Rayleigh number of 10, 200 and 300 respectively 
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Fig. (25) Isotherms contours for relative eccentricity of 0.2 in direction 315
o
 to the horizontal 

and Rayleigh number of 10, 200 and 300 respectively 
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Fig. (26) Stream function contours for relative eccentricity of 0.4 in direction 315
o
 to the 

horizontal and Rayleigh number of 10, 200 and 300 respectively 
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Fig. (27) Isotherms contours for relative eccentricity of 0.4 in direction 315
o
 to the horizontal 

and Rayleigh number of 10, 200 and 300 respectively 
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Fig. (28) Stream function contours for relative eccentricity of 0.6 in direction 315
o
 to the 

horizontal and Rayleigh number of 10, 200 and 300 respectively 
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Fig. (29) Isotherms contours for relative eccentricity of 0.6 in direction 315
o
 to the horizontal 

and Rayleigh number of 10, 200 and 300 respectively 

 

 


